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Abstract

Denoising diffusion probabilistic models (DDPMs) have shown strong performance
in image generation and editing. We hypothesize that multi-guidance editing in
pretrained diffusion models succeeds only for local changes (e.g., adding a smile
or slight aging) and fails for full 3D rotations without intermediate examples.
We evaluate zero-shot face editing under this hypothesis and find that it handles
small edits reliably but cannot produce coherent rotations. Attempts to improve
pose control,using TransFusion with LLaMA 3.2, spectral normalization, and
classifier-free guidance, yield only modest gains unless near-frontal faces are
included. Overall, zero-shot editing handles local changes well but still needs extra
supervision for large pose shifts.

1 Introduction

Denoising diffusion probabilistic models (DDPMs) have emerged as a powerful approach for high-
quality image generation and editing. Ho et al. (2020) introduced DDPMs as a way to learn complex
data distributions by gradually adding and then removing noise during a Markovian forward–reverse
process (Ho et al., 2020; Song et al., 2020b). Nichol & Dhariwal (2021) later showed that simple
modifications to the DDPM training objective can further improve sample quality and sampling
speed. More recent work has demonstrated that diffusion models can perform zero-shot editing by
guiding the reverse diffusion process using semantic conditions, without any fine-tuning or paired
labels (Deschenaux et al., 2024; Meng et al., 2021). In particular, Deschenaux et al. (2024) showed
that a pretrained DDPM can interpolate between two disjoint attribute manifolds, such as “neutral
face” and “smiling face”, by applying multi-guidance at inference time. Classifier-free guidance,
which mixes conditional and unconditional score estimates, has also become a standard technique to
balance sample fidelity and diversity when editing with diffusion models (Ho & Salimans, 2022).

Despite these advances, most zero-shot diffusion editing methods succeed only on tasks that involve
small, local changes,such as adding a smile or indicating a moderate age shift,where pixel-level
adjustments are limited to localized regions (Meng et al., 2021). It remains unclear whether the same
zero-shot interpolation procedure can handle harder, global transformations that require consistent
3D understanding, such as rotating a face from full left to full right. Prior work on face aging via
diffusion has shown that age progression typically requires fine-tuning or explicit conditioning, since
large texture and shape changes (e.g., wrinkles, hair color) exceed what simple guidance can achieve
(Chen & Lathuilière, 2023). Similarly, recent zero-shot portrait view synthesis methods exploit
specialized controllers or masked attention to manipulate pose without retraining (Gu et al., 2024),
but these approaches rely on additional modules beyond pure DDPM inference. Concurrently, hybrid
architectures like TransFusion combine autoregressive and diffusion losses in a single transformer
backbone to support multimodal generation, but adapting them for pose control has not been explored
under strict compute limits (Zhou et al., 2024).
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In this work, we hypothesize that multi-guidance editing in pretrained diffusion models works reliably
only when the desired change involves mostly local pixel shifts (e.g., neutral → smile, young → old).
We further posit that editing fails when a transformation demands a consistent, global 3D rotation
(e.g., full left → full right pose) unless the model has seen intermediate, near-frontal examples to
bridge the gap. In other words, classifier-free guidance can mix internal pose representations only if
the endpoint conditions are already close in latent pose space; without any true “middle” samples,
smooth global rotations cannot emerge from zero-shot inference alone.

Our contributions are the following:

• Characterize Zero-Shot Editing Limits. We show that multi-guidance editing succeeds
for local semantic shifts (e.g., expressions, mild aging) but fails for global 3D rotations
without intermediate examples (Ho et al., 2020; Deschenaux et al., 2024; Meng et al., 2021;
Song et al., 2020b; Nichol & Dhariwal, 2021).

• Evaluate Pure Zero-Shot on Age and Pose. We demonstrate that applying pure zero-
shot guidance,using a age classifier for “young → old” and a classifier for “left → right”,
produces realistic minor age changes but yields artifacts for large age gaps and incoherent
rotations, confirming that direct gradient-based guidance is insufficient for these tasks (Chen
& Lathuilière, 2023; Ho & Salimans, 2022; Meng et al., 2021; Gu et al., 2024).

• Introduce Auxiliary Techniques for Pose Control. To bridge the gap for full 3D rotations,
we try to TransFusion with pretrained LLaMA 3.2 (Grattafiori et al., 2024) weights (which
does not converge under our compute constraints) and revisit multi-guidance by (1) including
unlabeled, near-frontal images in the training splits and trying on a smaller gap (front and
extreme left images), (2) applying spectral normalization during inference, and (3) using
classifier-free guidance to interpolate between frontal and rotated embeddings. These
tweaks, especially classifier-free guidance on the small reduced gap, produce some plausible
rotations even without near-frontal examples, though performance still improves when
such examples are available, indicating that while CFG can bridge certain pose gaps, fully
zero-shot global rotations remain challenging (Deschenaux et al., 2024; Ho & Salimans,
2022; Zhou et al., 2024).

2 Background

2.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Dhariwal & Nichol, 2021) define
a forward noising process that gradually adds Gaussian noise to a clean image x0 over T timesteps.
At each timestep t, the forward distribution is

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
,

where {βt} is a variance schedule. During training, one samples t ∼ {1, . . . , T} uniformly and
optimizes a noise prediction network ϵθ to match the true noise ϵ:

Lsimple = Ex0,ϵ,t

[∥∥ϵ− ϵθ(xt, t)
∥∥2
2

]
where xt =

√
ᾱt x0 +

√
1− ᾱt ϵ, ᾱt =

t∏
s=1

(1− βs).

At inference time, one starts from xT ∼ N(0, I) and iteratively denoises using ϵθ to recover a clean
sample x0.

2.2 Conditional Generation via Classifier Guidance and Classifier-free guidance

A simple way to steer a pretrained DDPM toward a specific attribute c is classifier guidance (Dhariwal
& Nichol, 2021). Given a pretrained classifier pϕ(c | xt), one can approximate the gradient of the
log-posterior ∇xt

log pθ(xt | c) by

∇xt log pϕ(c | xt) ≈ ∇xt log pθ(xt | c) − ∇xt log pθ(xt),

so that each reverse step is modified as

xt−1 =
1√

1− βt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
+ γ∇xt

log pϕ(c | xt),
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where γ > 0 is the guidance weight. By increasing γ, the model’s output is pushed more strongly
toward samples the classifier assigns high probability for class c.

Alternatively, classifier-free guidance (CFG) (Ho & Salimans, 2022) trains the diffusion model
to predict both conditional and unconditional noise, ϵθ(xt, t | c) and ϵθ(xt, t). At inference, one
interpolates between these two predictions:

ϵ̂θ(xt, t | c) = (1 + w) ϵθ(xt, t | c)− w ϵθ(xt, t),

where w is a guidance scale. CFG has the advantage of not requiring a separate classifier and often
yields more stable attribute control (Nichol et al., 2021).

2.3 Zero-Shot Interpolation by Gradient Blending

Deschenaux et al. (2024) introduced a zero-shot interpolation strategy that blends classifier gradients
from two terminal attributes cA and cB without retraining. Denote by ∇x log pϕ(c | xt) the classifier
gradient for class c. At each diffusion step t, one computes a blended gradient

gt = (1− λt)∇xt
log pϕ(cA | xt) + λt ∇xt

log pϕ(cB | xt),

where λt ∈ [0, 1] is a schedule (e.g., linearly increasing from 0 to 1). The sample xt is then updated
by adding a scaled version of gt, effectively guiding the diffusion trajectory from cA toward cB . This
approach requires no additional training once ϵθ and pϕ are available, making it zero-shot.

In our work, we apply this method first to age progression (with cA = “young” and cB = “old”) and
then to face rotation (with cA = “left profile” and cB = “right profile”). We use a fixed guidance
weight (30) and a linear λt schedule over 4000 steps, following Deschenaux et al. (2024).

2.4 Spectral Normalization for Stable Guidance

Spectral normalization (SN ) (Miyato et al., 2018) constrains the Lipschitz constant of convolutional
layers by dividing each weight matrix W by its largest singular value σmax(W ). When applied to
the guidance classifier pϕ, SN helps keep classifier gradients bounded, which can reduce artifacts
in regions outside the training distribution. Although Deschenaux et al. (2024) reported smoother
interpolations with SN applied to pϕ, we find in Section 7 that SN on the U-Net backbone yields
limited visual improvement for large geometry changes.

2.5 TransFusion Architecture

TransFusion (Zhou et al., 2024) augments a pretrained DDPM’s U-Net with a transformer encoder to
enable fine-grained semantic control. In brief, TransFusion:

• Embeds text or attribute tokens (e.g., “frontal face,” “left profile”) via a transformer encoder
into a spatial feature map aligned with U-Net activations.

• Uses cross-attention to fuse transformer outputs with intermediate U-Net layers at multiple
resolutions.

• Trains both diffusion denoising and cross-attention jointly, often on large text–image corpora.

Because TransFusion requires extensive joint training on image–text data, we instead experiment
(Section 6) with injecting pretrained LLaMA 3.2 weights into the transformer encoder.

Together, these background componentsm DDPM formulation, classifier guidance, zero-shot gradient
blending, and architectural variants, form the foundation for our experiments on age progression and
face rotation.

3 Related Work

3.1 Diffusion Models for Image Synthesis and Editing

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) and related score-based ap-
proaches (Song & Ermon, 2019; Song et al., 2020b) have become competitive with GANs for
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high-quality image generation. Improved sampling methods (e.g., DDIM (Song et al., 2020a)) and
latent diffusion frameworks (Rombach et al., 2022) reduce compute cost while maintaining fidelity.
Beyond unconditional synthesis, diffusion models support a variety of editing tasks. SDEdit (Meng
et al., 2021) and ILVR (Choi et al., 2021) use conditional denoising to perform inpainting and style
transfer without retraining. Classifier-free guidance (CFG) (Ho & Salimans, 2022) enables smooth
trade-offs between conditional and unconditional generation, and has underpinned many recent text-
to-image systems (Saharia et al., 2022). Other work applies diffusion to super-resolution (Moser et al.,
2024) and domain transfer (Li & Yan, 2024). We do not focus on architectural or training variants
(e.g., alternative UNet designs or corruptions) since our emphasis is on inference-time guidance of
pretrained models. For comprehensive overviews of diffusion architectures and training, see Ulhaq &
Akhtar (2022) and Moser et al. (2024).

3.2 Zero-Shot Interpolation and Compositional Editing

Deschenaux et al. (2024) introduced zero-shot interpolation for DDPMs, showing that a model trained
only on extreme attribute labels (e.g., clearly smiling vs. non-smiling) can generate intermediate
samples by blending classifier gradients at inference. Variations include blending text embeddings
(Hu et al., 2023) for instance. Compositional diffusion methods (Kim et al., 2023) fuse multiple
classifiers to produce novel attribute combinations (e.g., “smiling + eyeglasses”), and latent inversion
approaches (e.g., Imagic (Kawar et al., 2023)) refine real images via per-image optimization. Our
work extends the classifier-guided interpolation framework to more complex face attributes,namely,
age progression and face rotation,rather than simple expressions. Unlike latent inversion methods, we
retain a pure zero-shot inference focus and do not perform any optimization per input image.

3.3 Pose-Aware Face Generation and 3D Priors

In the GAN literature, many methods target explicit 3D control for faces. F-GAN (Nowozin et al.,
2016) and Exp-GAN (Lee et al., 2022) combine 3D morphable models (3DMMs) with adversarial
training to frontalize or manipulate pose. MOST-GAN (Medin et al., 2022) and CGOF++ (Sun
et al., 2023) enforce 3DMM constraints to disentangle shape, expression, and lighting. More recent
implicit 3D methods (e.g., EG3D (Chan et al., 2022), LiftedGAN (Shi et al., 2021)) learn tri-plane or
NeRF representations that support novel views and relighting. In diffusion, a few works integrate 3D
priors: Zhou et al. (Liu et al., 2023) embed a 3DMM into the conditional diffusion process for face
swapping. These approaches require specialized training pipelines or multi-view data and lie outside
our zero-shot inference framework.

By contrast, we attempt zero-shot pose interpolation directly in pixel space with classifier guidance
and focus on the failure modes that arise when geometry changes are large. Our results highlight the
gap between simple diffusion-based edits and fully 3D-aware generation methods for pose control.

4 Methodology

4.1 Problem Statement and Formal Definitions

We denote our dataset of N face images by

D = {(xi, zi)}Ni=1, xi ∈ RD, zi ∈ [0, 1]L,

where each latent vector zi encodes L continuous attributes (e.g., age or yaw) under a semi-order:
two values z

(ℓ)
i , z

(ℓ)
j are considered indistinguishable if |z(ℓ)i − z

(ℓ)
j | < ϵ. We fix δ > 0 such

that the “extreme” intervals [0, δ] and [1 − δ, 1] do not overlap the “mild” band [0.5 − δ, 0.5 + δ].
Our goal is zero-shot interpolation: training a DDPM only on extreme samples (i.e., indices with
z(ℓ) ∈ [0, δ] ∪ [1− δ, 1] for each attribute) and generating samples whose inferred z-values lie in the
mild interval.
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4.2 Multi-Guidance Sampling

We employ a product-of-experts sampling density:

pΠ(x) ∝ p(x)

M∏
m=1

pϕ(ym | x)λm ,

where p(x) is the unconditional DDPM prior and each pϕ(ym | x) is a guidance classifier (FaRL for
age; EfficientNet for other attributes). At each reverse diffusion step t = 1, . . . , T (with T = 4000
and cosine noise schedule parameter s = 0.008), we blend gradients for two target classes cA → cB
via

gt = w
[
(1− λt)∇x log pϕ(cA | xt) + λt∇x log pϕ(cB | xt)

]
,

where λt increases linearly from 0 to 1, and w = 30 for age (or w = 45 for pose). The mean update
becomes

µ̃t = µθ(xt, t) + σ2
t gt,

and we sample
xt−1 ∼ N(µ̃t, σ

2
t I).

4.3 Extremal Training Set Extraction

All images are downscaled to 64× 64. For both CelebA-HQ (Liu et al., 2015) and LFR (Elharrouss
et al., 2020), we fine-tune an EfficientNet to predict each binary attribute, retaining images with
soft-label confidence above threshold τ1 (set to achieve perfect precision on a held-out validation set).
We then split this pool into five folds, train five EfficientNet models, and keep only images whose
minimum ensemble confidence exceeds τ2. Finally, we select the top-k most extreme samples in
each band [0, δ] and [1− δ, 1] to form the training set D∗. For LFR yaw, we define “left” as ≥ 30◦

and “right” as ≤ −30◦, discarding the outer 20% slack to avoid mild poses.

4.4 Model Architecture and Training

Our diffusion model uses a U-Net backbone with three residual blocks per scale and self-attention
at feature map resolutions of 32, 16, and 8 channels. We train for 150,000 steps using the Adam
optimizer with learning rate 10−4 and exponential moving-average decay of 0.9999. A cosine noise
schedule with s = 0.008 and T = 4000 timesteps is used. Sampling employs 250 reverse steps with
the multi-guidance update described above.

4.5 Spectral Normalization and Classifier-Free Guidance

To stabilize guidance gradients, we apply spectral normalization to all convolutional weights, dividing
each weight by its largest singular value via one power iteration. In parallel, we incorporate classifier-
free guidance by randomly dropping the conditional embedding with probability pdrop = 0.1 during
training. At inference, we blend the conditional and unconditional noise predictions:

ϵ̂θ(xt, t | c) = (1 + w) ϵθ(xt, t | c) − w ϵθ(xt, t),

with w matching the multi-guidance weight above.

5 Experiments and Results

We first want to test the results on a harder task than smile, so we therefore test to interpolate zero-shot
on age.

5.1 Zero-Shot Age Progression

Dataset We base our experiments on the CelebA dataset (Liu et al., 2015), which contains face
images each annotated with 40 binary attributes such as “Smiling,” “Young,” and “Blond Hair” . For
inference at 64 × 64 resolution, we downscale all images accordingly. Because CelebA’s labels are
binary, we first train attribute-specific classifiers on the full dataset and calibrate them via temperature
scaling.
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Attribute Definition and Data We define two age categories: "young" (age ≤ 30) and "old" (age
≥ 60). From the CelebaHQ dataset, we train an evaluation classifier and take only extremal data
points to construct an extremal dataset, as described by Deschenaux et al. (2024).

Dataset imbalance The CelebA-HQ dataset shows a clear imbalance between age and gender groups.
In our subset, there are 1 267 male images labeled as “young” (age ≤ 30) and 2 034 male images
labeled as “old” (age ≥ 60). In contrast, there are 12 275 female images labeled as “young” and only
128 female images labeled as “old.” As a result, the dataset is heavily skewed toward young female
faces. From visual inspection (see Figure 1b), men tend to appear older in the photos compared to
women. To better understand any potential bias, it would be useful to check the proportion of men
and women in each age group during training to see how this imbalance might affect the model. This
is what we do and we find an excessive proportion of young female in the dataset, compared to young
male (Fig. 1a).

(a) Imbalance of the CelebA dataset regarding age and
gender.

(b) There is a bias when generating samples out of the
imbalanced CelebA dataset.

Figure 1: An imbalanced dataset results in highly biased images when sampling the DDPM model.

Fixing the dataset imbalance To correct this imbalance, we use our age classifier to select more
reliable samples. First, for the “old” category, we keep only those images where the classifier’s
probability of being old is below 0.4 and the ground-truth label is “old,” yielding about 7 000 images.
Second, for the “young” category, we keep only images where the classifier’s probability of being
young is above 0.8 and the ground-truth label is “young,” giving around 18 000 images. We then train
a second classifier on a different subset (inspired by Deschenaux et al. (2024)) and retain only the
images on which both classifiers agree. Finally, we apply oversampling so that neither age category
is overrepresented in the final training set.

Guidance Schedule and Interpolation Let ϵθ(xt, t | c) denote the noise prediction network condi-
tioned on attribute c. During inference, we perform zero-shot interpolation between two conditioning
signals cA (“young”) and cB (“old”). At each timestep t, we compute

∇xt = 30
[(
1− λ

)
∇x log pθ

(
xt | young

)
+ λ∇x log pθ

(
xt | old

)]
,

where λ ∈ [0, 1] is incremented linearly from 0 to 1 over the course of 4000 denoising steps, and the
factor 30 is the fixed guidance weight applied to both classes as in Deschenaux et al. (2024). Gradients
∇x log pθ are approximated via classifier guidance using a pretrained age-attribute classifier trained
on the extremal “young” vs. “old” dataset.

Results We see a good interpolation for using the multi-guidance technique, with a more uniform
distribution along the classifier prediction 2b, a sign that the method is at least working correctly. The
generated images 2a show a clear change in age, but the editing appears rough. In many cases, the
hair and face look like they were patched together, almost as if a younger face was placed onto a
silhouette. The face does look younger overall, but the blending is not seamless and resembles an
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amateur photoshopping effort. Despite these visible artifacts, the main goal of making the face appear
younger is achieved.

(a) Sample grid guidance.

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

Uncond.
Multi-guid. = 30
Data.

(b) Distribution with λ = 30.

Figure 2: Guidance generation with λ = 30 with the dataset described in 5.1

5.2 Zero-Shot Face Rotation

Pose Binning and Data Splits For our first pose-based split, we selected images from the LFR
dataset (Elharrouss et al., 2020) according to extreme yaw angles, predicted using yakhyo (2025)
(see Figure 3). Specifically, all images with yaw ≥ 30◦ were assigned to the left-facing class, and all
images with yaw ≤ −30◦ were assigned to the right-facing class. We further enforced extremity by
removing the bottom 20% of left-facing images (i.e., those with the smallest yaws above 25◦) and
the top 20% of right-facing images (i.e., those with the largest yaws below −25◦). After resizing
all images to 64 × 64, this split contains approximately 22000 left-facing and 23000 right-facing
samples.

Figure 3: Using yakhyo (2025) to predict the yaw on the LFR dataset, see the blue line.

Guidance Schedule and Interpolation We apply the same zero-shot blending strategy as in Sec-
tion 5.1, with cA = “left profile face” and cB = “right profile face.” We linearly increase λ from 0 to
1 over 4000 steps.
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(a) Sample grid guidance. (b) Distribution with λ = 45.

Figure 4: Guidance generation with λ = 45 with the dataset described in 5.2.

Results We observe three primary failure modes in 4a:

• Geometric Inconsistency: Facial landmarks are not preserved; eyes or nose are displaced
(3rd row, 7th column).

• Texture Artifacts: Skin textures become smeared or patchy, particularly near occluded
regions (e.g., ear edges) (1st row, last column).

• Pose Collapse: Instead of smoothly rotating, the model “averages” frontal and profile
features, producing an unnatural intermediate face (4th column, 2nd row).

• Dark silhouette: We observe dark image with a light face silhouette in it but no special
details (5th row, 1st column).

These failures motivate exploration of more specialized architectures (Section 6).

6 Adapting TransFusion with LLaMA 3.2 Weights

6.1 TransFusion Overview

TransFusion Zhou et al. (2024) integrates a transformer encoder into a diffusion framework to improve
fine-grained semantic control. The architecture comprises:

• A pretrained U-Net backbone for diffusion denoising.

• A transformer encoder that maps text or attribute embeddings to a spatial feature map aligned
with the U-Net’s intermediate layers.

• Cross-attention layers that fuse transformer outputs with U-Net activations at multiple scales.

Our aim was to adapt TransFusion for face pose interpolation by conditioning on text as we thought
it might give a better and more precise conditioning and information than a classifier. To avoid any
issue with dataset contamination, we choose to retrain the image modality and use a pretrained LM
backbone to already have a semantic understanding of language.

6.2 LLaMA 3.2 Weight Injection

Motivation We hypothesize that LLaMA 3.2’s large language model (LLM) embeddings (Grattafiori
et al., 2024) encode richer semantic priors, which could help the transformer encoder interpret pose
prompts. Given compute limits, we replace TransFusion’s transformer weights with corresponding
layers from LLaMA 3.2 (1B parameters). We keep TransFusion’s positional embeddings and cross-
attention projections, but initialize most self-attention and feed-forward blocks from LLaMA 3.2. To
avoid the cost of full fine-tuning, we insert lightweight LoRA adapters into each attention layer and
train only those adapters.

Implementation Details

• Transformer Alignment: We use TransFusion training repository but import Llama 3.2
architecture from the official repository to ease the loading of the weights
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• Embedding Adaptation: We project 256-dim pose attribute embeddings into LLaMA
3.2’s 768-dim input space via a learned linear layer, so that pose tokens (“<pose>left” or
“<pose>frontal”) can enter the LLaMA-initialized encoder.

• LoRA Layers: Instead of updating all of LLaMA 3.2’s weights, we add LoRA adapters
(Hu et al., 2022) (rank 4) to each query and value projection. During training, we freeze
all original LLaMA 3.2 parameters and train only the LoRA matrices and the embedding
projection.

• Training Dataset: We use the LFR subsets described in Section 5.2, with pose labels
encoded as text tokens. We train for 15 epochs with a learning rate of 1× 10−4, updating
only LoRA and projection weights.

6.3 Results and Analysis

Despite training the LoRA adapters for 15 epochs on our ≈50 k face-patch dataset, the LLaMA
3.2–initialized TransFusion model fails to produce coherent rotations. It generates noise or generic
denoised faces rather than reflecting pose changes. We identify several factors:

• Token Count Mismatch. The original TransFusion model sees up to 0.5–2 trillion tokens
(combined text + image) to learn high-fidelity synthesis. In contrast, our training data
represents only ≈10 million tokens (image patches + pose tokens), far below the scale
needed to override LLaMA 3.2’s language priors.

• Strong Language Bias. Injecting LLaMA 3 weights imparts a heavy text-centred prior to
the transformer. Since we update only small LoRA matrices and the pose projection, the
model retains its original LLM attention patterns, optimizing primarily for denoising instead
of pose semantics.

• Limited Adapter Capacity. The LoRA adapters (rank 4) introduce only a small number of
additional parameters. This low-rank update is insufficient to shift the encoder’s behaviour
from language modeling to nuanced pose manipulation given our dataset size.

Figure 15 shows an example sample after 200 000 training steps: the outputs remain noisy without
clear face rotations. Consequently, we conclude that under our compute and data constraints, LoRA-
based weight injection from LLaMA 3 does not improve pose control in TransFusion. We therefore
return to enhancing multi-guidance diffusion (Section 7).

Figure 5: Samples from the TransFusion model with LLaMA 3 weight injection (LoRA adapters) after 200 000
training steps.

7 Enhanced Multi-Guidance: Better data splitting, Spectral Normalization
and Classifier-Free Guidance

7.1 Motivation and Overview

Our inability to achieve zero-shot pose interpolation with vanilla multi-guidance indicates that more
stable gradient conditioning and more controlled data partitions are necessary (Deschenaux et al.,
2024). We therefore incorporate three core enhancements: first, alternative dataset splits to enforce
clear separation between left-, right-, and frontal-facing images according to the LFR dataset; second,
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we apply spectral normalization to the attribute-guidance classifier, rescaling each weight matrix
by its largest singular value to enforce a 1-Lipschitz mapping,this smooths the classifier’s gradients
and yields gradual probability transitions in latent space, enabling the sampler to interpolate into
unseen pose regions; and third, classifier-free guidance (CFG), whereby the diffusion model is trained
jointly on conditional and unconditional objectives, enabling smoother interpolation trajectories
between pose embeddings at inference time. Spectral normalization has been shown to stabilize GAN
and diffusion gradients by normalizing the largest singular value of convolutional weight matrices
at each forward or backward pass. Classifier-free guidance further improves sample fidelity by
allowing interpolation between conditional and unconditional score estimates, which is particularly
helpful when target attributes (e.g., extreme yaw angles) reside in sparsely covered regions of the
training distribution. It is important to note that our dataset splits are still derived from the LFR
(Left-Front-Right) pose-invariant face dataset (Elharrouss et al., 2020), which doesn’t provide precise
yaw annotations for each image, but we construct the yaw annotation using the head-pose-estimation
classifier from (yakhyo, 2025), as explained in 5.2.

7.2 Dataset Splitting by Pose Clustering

Instead of random train–test splits, we partition the LFR dataset by yaw angle into three distinct
splits, each containing approximately 50–60 k images. The splits are defined as follows:

1. A is extreme left + extreme right (like in 5.2).
2. B is extreme left + extreme right + few unlabeled front.
3. C is slightly right (almost front) + extreme left, to reduce the gap between the two extremum

of the dataset.

All images are resampled to 64× 64 resolution to match our DDPM training configuration. During
both training and inference, we use the head-pose-estimation model from yakhyo (2025) to compute
predicted yaw angles for each generated sample, enabling quantitative evaluation of pose estimation.

7.2.1 Results

Dataset A After training the model for 100 000 steps, we sample using classifier guidance with
λ = 45. Figure 6b shows that many generated faces follow the “left” and “right” profile labels, but
several images already look distorted or warped. The yaw distribution in Figure 6a confirms that
guided samples cluster around the extreme poses more strongly than the unconditional samples, yet
there remains a gap in the middle yaw values.

We observe three main failure modes in these outputs. First, facial landmarks often become mis-
aligned,eyes or the nose shift unnaturally,indicating the model struggles to maintain geometric
consistency when pushed strongly toward opposite profiles. Second, skin textures tend to smear or
form patchy artifacts, especially around occluded regions like the ears; this suggests that the classifier
gradient is too coarse and overrides the detailed texture priors learned by the DDPM. Third, instead
of producing a smooth rotation, the model sometimes “averages” frontal and profile features, yielding
blurry, unnatural intermediate faces. This pose collapse likely arises because the two classifier
gradients point in conflicting directions, causing the diffusion process to settle on a mean-value blend
rather than a clear pose.

(a) Samples generated using classifier guidance, with
λ = 45. (b) Distribution with λ = 45.

Figure 6: Guidance generation with λ = 45 with the dataset A described in 5.2.
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Dataset B Even though our pose classifier was never trained on frontal faces, multi-guidance
generates realistic front-facing images. In Figure 7a, the distribution of predicted yaw angles has
a clear peak around 0◦, showing that many generated samples are frontal. This works because the
DDPM training set included a small number of (around 5%) unlabeled frontal images, which the
diffusion model learned even though the classifier did not.

Figure 8a shows several high-quality frontal faces produced by multi-guidance. We also see a
few slightly turned faces in Figure 8b (slightly left) and Figure 8c (slightly right). Although these
intermediate poses are less common, they still look reasonable for some samples.

These results suggest that including a small number of unlabeled frontal faces in the DDPM training
set, but not in the classifier, allows multi-guidance to reproduce front-facing images and even fill in
some slightly turned poses. In other words, the DDPM has implicitly learned a “frontality” manifold
from those few frontal examples, and blending classifier gradients for “left” and “right” is enough
to traverse that manifold. The diffusion model’s latent space already encodes front-on poses, so
multi-guidance can guide samples into that region without ever having seen a labeled frontal class.

(a) Samples generated using classifier guidance, with
λ = 20. (b) Distributions with λ = 20.

Figure 7: Guidance generation with λ = 20 with the dataset described in 5.2.

(a) Quality samples from front,
with λ = 20.

(b) Quality samples from slightly
right, with λ = 20.

(c) Quality samples from slitghly
left, with λ = 20.

Figure 8: Example of quality generation with the dataset B 5.2.

Dataset C Figure 9a shows the outputs when λ = 20. Most images look like dark, silhouette-shaped
blobs, and only a few hint at a slightly turned face. The yaw distribution in Figure 9b confirms that
very few samples fall in the intermediate pose.

When λ = 30 (Figure 10a), almost all images remain blob-like, with almost no facial details. The
yaw histogram in Figure 10b still peaks at the extremes, showing few samples in between.

At λ = 45 (Figure 11a), sample quality drops further: nearly every image is a silhouette blob, and
Figure 11b shows that almost no samples bridge the gap.

Figure 12c presents the best examples for λ = 15, λ = 30, and λ = 45. Even with λ = 15, most are
still silhouette blobs, and only a couple hint at a “slightly left” pose. As λ increases in the center and
right panels of Figure 12c, almost none of the images show a clear face.
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In summary, for Dataset C, multi-guidance usually produces dark silhouettes, and only a handful
of outputs suggest a recognizable face,even though the DDPM does capture left–right symmetry in
those few flips.

(a) Samples generated using classifier guidance. (b) Distribution with λ = 20.

Figure 9: Guidance generation with λ = 20 with the dataset described in 5.2.

(a) Samples generated using classifier guidance. (b) Yaw distribution with λ = 30.

Figure 10: Guidance generation with λ = 30 with the dataset described in 5.2.

(a) Samples generated using classifier guidance. (b) Distribution with λ = 45.

Figure 11: Guidance generation with λ = 45 with the dataset described in 5.2.

(a) (b) Distribution with λ = 20. (c) Distribution with λ = 20.

Figure 12: Guidance generation with different weights paramaters: 15, 30 and 45 on the dataset C.5.2.
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7.3 Spectral Normalization on U-Net Features

To prevent gradient magnitudes from exploding when mixing score estimates for widely separated
pose classes, we applied spectral normalization to all convolutional weight matrices in the pretrained
U-Net during both training and inference. In the zero-shot interpolation context, (Deschenaux
et al., 2024) demonstrate that spectral normalization applied to the guidance classifier can smooth
predictions in unseen regions, potentially yielding more coherent intermediate samples. Specifically,
during training and inference, for each convolutional layer weight W we compute its largest singular
value σmax(W ) via one-step power iteration and replace W with W̄ = W/σmax(W ), constraining
the layer’s Lipschitz constant to 1 and keeping gradients bounded. Although this regularization
theoretically stabilizes the denoising trajectory, in our experiments we did not observe any visually
noticeable improvement in pose-interpolation quality.

7.3.1 Results

Figure 13a shows sample outputs generated with classifier guidance using spectral normalization (SN),
and Figure 13b plots the corresponding pose label distribution for λ = 45. In practice, applying SN to
the U-Net’s convolutional layers did not yield consistently better interpolation results. Qualitatively,
the faces in Figure 13a still exhibit blurring and distortions similar to the no-SN baseline, and in some
cases artifacts appear more pronounced. Quantitatively, the pose distribution in Figure 13b remains
wide and multi-modal, indicating that SN fails to concentrate outputs toward intermediate poses more
effectively than without SN.

One possible explanation is that SN constrains the Lipschitz constant of each convolutional layer,
which helps prevent gradient explosion but does not directly address the semantic gap between extreme
poses. Since the classifier gradients remain noisy when extrapolating to unseen intermediate angles,
simply bounding weight norms is insufficient to guide the diffusion process toward coherent rotations.
In other words, SN stabilizes gradient magnitude but cannot invent missing “in-between” pose
information; thus, it provides little to no improvement,and sometimes degrades pose-interpolation
quality altogether.

(a) Samples generated using classifier guidance with
spectral normalization. (b) Distribution with λ = 45.

Figure 13: Guidance generation with λ = 45 with the dataset described in 5.2.

7.4 Classifier-Free Guidance Integration

We train our DDPM on split C using the classifier-free guidance (CFG) framework: at each diffusion
timestep t, with probability pdrop = 0.1 we replace the pose conditioning label c with a null token ∅,
training the network to predict both conditional and unconditional noise estimates.

Dataset C with Classifier-Free Guidance Figure 14a shows samples generated using classifier-free
guidance on Dataset C, and Figure 14b shows the corresponding yaw-angle distribution. Compared
to classifier guidance, classifier-free guidance produces much smoother transitions between “extreme
left” and “slightly right” poses. In Figure 15a, many faces appear to move gradually from left-profile
toward an almost front pose, whereas before most outputs were just dark blobs. The yaw histogram
in Figure 14b confirms that guided samples now cover a wider range of yaw angles, including
intermediate values that were missing previously. Surprisingly, the model even generates flipped
(mirror) versions of faces, indicating it has learned to recreate left–right symmetry rather than relying
solely on the classifier’s two labels 15b. We also see this in the histogram with the some faces being
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generated with yaws over 20 degrees. We plot several of them (with 20 ≤ yaw ≤ 25) in Figure 15b.
Overall, classifier-free guidance allows the DDPM to fill in the gap more effectively and produce
higher-quality, more varied poses than classifier guidance alone.

(a) Samples generated using classifier guidance. (b) Distribution with λ = 45.

Figure 14

(a) Quality samples between -25 and -20 degrees of
yaw orientation.

(b) Quality samples between +20 and +25 degrees of
yaw orientation.

Figure 15

7.5 Synthetic Dataset

Figure 16: Example of samples included in the synthetic dataset.

We also evaluate our guidance methods on a simple, synthetic dataset (see Figure 16 for visual
examples) inspired by Deschenaux et al. (2024). The dataset comprises 15000 64×64 images evenly
split between two classes (“left” vs. “right”). Each image contains a single disc whose horizontal
position, vertical position, hue (red tints can vary in average by 10), and gradient start have a epsilon
variance. This controlled setting allows us to precisely assess each method’s ability to interpolate
between the two endpoint modes.
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Figure 17: Qualitative interpolation between the two endpoint classes on the synthetic dataset. Left: Classifier
Guidance (CG). Middle: Classifier-Free Guidance (CFG). Right: CFG with Spectral Normalization (CFG+SN).

7.5.1 Classifier Guidance (CG)

When using traditional classifier guidance, we observe that the transition between the two modes
remains essentially bimodal: at intermediate guidance strengths the sampler still produces two distinct
discs corresponding to the endpoints rather than a single blended object. Concretely:

• No smooth interpolation: samples at intermediate steps show two separate discs, indicating
a failure to merge the modes.

• No gradual blending of colors: there is no perceptible gradient between the pure “left” and
“right” hues.

These artifacts suggest that CG overly biases generation toward the two learned class prototypes.

7.5.2 Classifier-Free Guidance (CFG)

Classifier-free guidance sometimes remedies the bimodal failure by producing a single disc at
intermediate latents, effectively interpolating between the endpoint classes. However, this comes at
the cost of:

• Color consistency issues: the hue across the disc can fluctuate, leading to patchy or blotchy
appearance.

• Edge artifacts: small speckle noise and ringing around the disc boundary become visible.

7.5.3 Classifier-Free Guidance with Spectral Normalization (CFG+SN)

Augmenting CFG with spectral normalization on the score network further improves interpolation
quality. As shown in Figure 17, CFG+SN yields:

• Smooth single-ball blends: the sampler consistently produces a single disc whose color
transitions smoothly from one endpoint hue to the other.

• Minor remaining artifacts: slight edge noise and minor texture imperfections persist, and
color saturation across the disc can be marginally uneven.

8 Conclusion, Discussion and Future Work

We test how well a diffusion model edits faces without any extra training or labels. We confirm that
zero-shot multi-guidance handles small edits like adding a smile or slight aging. When we move to
larger changes, making a face look much older or rotating it from full left to full right, direct multi-
guidance fails. For age progression, small gaps (e.g., “20s” → “30s”) produce some wrinkles, but
larger age jumps cause odd artifacts. For pose rotation, guiding the model with a simple yaw classifier
over 4000 steps still yields blurry and distorted outputs without a clear rotation. We then test three
auxiliary techniques to improve pose control: (1) training TransFusion from scratch with LLaMA
3 weights in its encoder (which does not converge under our compute limits), (2) adding spectral
normalization to the U-Net during inference (which does not improve pose interpolation), and (3)
using classifier-free guidance to blend frontal and rotated embeddings (which gives modest gains but
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still needs unlabeled front faces). We also evaluated our guidance methods on a controlled synthetic
dataset of 15 000 colored-disc images interpolating between left and right endpoints, finding that
classifier guidance fails to blend the modes (producing two separate discs), classifier-free guidance
can yield a single disc but with color-consistency and edge artifacts, and CFG+SN produces the
smoothest interpolation with only minor noise. Overall, multi-guidance diffusion excels at small, local
edits (e.g. smiles) but fails on large, global changes like full rotations; CFG and spectral normalization
smooth interpolation and stabilize gradients yet still exhibit artifacts, and TransFusion+LLaMA-3 via
LoRA does not converge under current compute/data. Next, we’ll combine CFG+SN for stronger
global control and scale up data/token coverage or adapter capacity to make TransFusion viable.

Discussion Our experiments highlight several key points:

• Limits of Pure Zero-Shot. Direct gradient-based guidance produces realistic small edits
but cannot bridge large attribute gaps. When the model has never seen intermediate poses, it
cannot invent them.

• Training TransFusion with LLaMA 3.2 Weights. We train TransFusion from scratch by
initializing its encoder with LLaMA 3 weights, hoping this provides better pose control.
However, the strong language priors and our limited data mean the model only learns to
denoise, not rotate faces.

• Spectral Normalization. Although SN keeps gradients stable, it does not add any new 3D
information. In practice, it makes little difference for pose interpolation and sometimes
worsens artifacts.

• Classifier-Free Guidance. CFG mixes internal pose representations and yields smoother
transitions.

• Other Attempts. We also try using a continuous classifier (based on the yaw detector from
yakhyo (2025). Unfortunately, we struggled to make it converge as we needed to retrain it
on noisy examples. It was landing reasonable results for slightly noisy images but struggled
but higher noise level.

Future Work We see two main avenues to build on this work:

• Incorporate 3D Priors. Embedding explicit 3D geometry, such as a neural radiance field or
a 3D morphable model, into the diffusion guidance process may allow more reliable pose
control without full supervision. For example, a pretrained 3DMM encoder could supply
intermediate pose embeddings that bridge extreme yaw angles.

• Develop Inference-Time Controllers. Designing novel guidance mechanisms that manipu-
late pretrained latent spaces (e.g., CLIP, latent diffusion, or a separate pose encoder) during
inference could steer pose or age attributes more robustly. A dynamic, iterative controller
that adjusts guidance weights based on intermediate outputs may reduce reliance on labeled
intermediate samples.
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